Robotics, Transhumanism, Mind Control
Alex Jones Explains the Elite’s Master Plan
June 17, 2010Infowars.com - Alex Jones gives an analysis of the elite’s master plan, from GMO food to life extension technology, to mass depopulation.
Now Scientists Read Your Mind Better Than You Can
June 22, 2010* People were right about themselves just half the time
* Technique might enhance advertising, education efforts
Reuters - Brain scans may be able to predict what you will do better than you can yourself, and might offer a powerful tool for advertisers or health officials seeking to motivate consumers, researchers said on Tuesday.
They found a way to interpret "real time" brain images to show whether people who viewed messages about using sunscreen would actually use sunscreen during the following week.
The scans were more accurate than the volunteers were, Emily Falk and colleagues at the University of California Los Angeles reported in the Journal of Neuroscience.
"We are trying to figure out whether there is hidden wisdom that the brain contains," Falk said in a telephone interview.But with functional magnetic resonance imaging or fMRI, Falk and colleagues were able to go beyond good intentions to predict actual behavior.
"Many people 'decide' to do things, but then don't do them," Matthew Lieberman, a professor of psychology who led the study, added in a statement.
FMRI uses a magnetic field to measure blood flow in the brain. It can show which brain regions are more active compared to others, but requires careful interpretation.
Falk's team recruited 20 young men and women for their experiment. While in the fMRI scanner they read and listened to messages about the safe use of sunscreen, mixed in with other messages so they would not guess what the experiment was about.
"On day one of the experiment, before the scanning session, each participant indicated their sunscreen use over the prior week, their intentions to use sunscreen in the next week and their attitudes toward sunscreen," the researchers wrote.About half the volunteers had correctly predicted whether they would use sunscreen. The research team analyzed and re-analyzed the MRI scans to see if they could find any brain activity that would do better.
"After they saw the messages, the volunteers answered more questions about their intentions, and then got a goody bag that contained, among other things, sunscreen towelettes."
"A week later we did a surprise follow up to find out whether they had used sunscreen," Falk said in a telephone interview.
Activity in one area of the brain, a particular part of the medial prefrontal cortex, provided the best information.
"From this region of the brain, we can predict for about three-quarters of the people whether they will increase their use of sunscreen beyond what they say they will do," Lieberman said.Now, Falk said, the team is looking for other regions of the brain that might add to the accuracy of the technique.
"It is the one region of the prefrontal cortex that we know is disproportionately larger in humans than in other primates," he added. "This region is associated with self-awareness, and seems to be critical for thinking about yourself and thinking about your preferences and values."
While the findings can be important for advertisers seeking to hone a motivational message, they can be equally important for public health experts trying to persuade people to make healthier choices, Falk said.
The team is now preparing a report on experiments to predict whether people would quit smoking after seeing motivational messages.
Good Reception: Using Cell Phones to Predict Behavior
Originally Published on September 28, 2005E-Content Magzine - If your cell phone knew what you were going to do at two o'clock, would that change how you planned your day? If your cell phone "predicted" correctly where you would be at a particular time of the week, how would you feel? No longer hypothetical situations, the Reality Mining experiment answers these questions.
Headed by Nathan Eagle, the Reality Mining experiment was designed to more precisely determine how people spent a period of time by tracking their daily cell phone usage. The academic research project was performed at the MIT Media Laboratory from August 2004 through January 2005. It takes advantage of the increasingly widespread use of mobile phones to provide insight into the dynamics of both individual and group behavior. By leveraging machine learning, the Reality Mining experiment is creating models that can be used to predict what a single user will do next, as well as model behavior of large organizations. Eagle and his team handed out 100 Nokia 6600 cell phones to MIT students and faculty and, using censors in the phone with information gathered from cell phone towers, were able to predict a user's location, based on phone usage over the course of six months.
The project captured communication, proximity, location, and activity information from 100 subjects at MIT over the course of the 2004-2005 academic year, which represents more than 350,000 hours (~40 years) of continuous data on human behavior. The research will examine how social networks evolve over time, the predictability of most people's lives, the flow of information, the relationship between the topology of a social network and proximity data, and how to change group interactions to promote better functioning.
According to data collected by Eagle and his staff, 35% of the subjects used their phone's clock application regularly, yet opening the clock application on the phone involved 10 keystrokes. The data showed that people who used the phone's clock application used it at their homes rather than at work. Additional results from the Reality Mining experiment show that, not surprisingly, 81% of communications from the cell phone were made via a voice message. Despite the growing popularity of text messaging, it accounted for only 5% of communications, while email communications accounted for 13%. Learning user's application routines can enable phone makers to place well-used applications in more prominent places, for example, as well as create a better model of user behavior.
In addition to his Reality Mining experiment, Eagle helped start a company called MetroSpark that "connects people who don't know each other, but probably should," says Eagle. MetroSpark is a New York-based company, which will provide a free mobile phone-based service. It will generate money from directed, opt-in, context-driven alerts to services. The data collected from the Reality Mining experiment, including how people interact with each other in social settings, provides the basis for the matchmaking algorithm for MetroSpark.
Bluetooth technology, which has been around for awhile but is just now reaching market penetration, helped pave the way for Eagle's work. "Bluetooth enables the MetroSpark service by locating people, places, and things that are proximate to the user," says Eagle. "But it's hard to comment on the staying power of Bluetooth because there are already better protocols." A Bluetooth device was initially used to allow wireless headsets or laptops to connect to a phone. Serendipitously, Bluetooth devices picked up the location of other Bluetooth devices. Eagle was able to harness Bluetooth technology by using a device inquiry scan—the device sends out a ping every five minutes to a range of ten meters. When the ping came back, it could identify not only people, but also places and things within that range. Eagle says that "anyone carrying a Bluetooth device essentially is in a ten meter bubble where they will broadcast their unique ID."
It seems as though everyone these days has a cell phone—from teens to tow truck drivers to top executives. Interestingly, Eagle's work actually would allow us to predict what possible occupations individuals have through their cell phone usage.
No comments:
Post a Comment